Fundamentals of applied robotics: an integrated guide on control, programming and training

Autores/as

DOI:

https://doi.org/10.47606/ACVEN/PH0383

Palabras clave:

Learning, Robot Types, Control Methods, Programming, Training, Robotic Manipulation, Autonomous Navigation

Resumen

Applied robotics has become a transversal tool in research, manufacturing, and automation. Yet, its adoption by non-engineering professionals is limited by technical complexity and rapid paradigm shifts. This review provides an accessible framework that enables non-specialists to understand, evaluate, and apply robotic systems. The discussion is organized into three pillars: taxonomy of platforms (manipulators, mobile robots, humanoids), control methods (kinematics, dynamics, trajectory planning), and programming and training paradigms (from ROS architectures to imitation and reinforcement learning). Emphasis is placed on integrating classical control, structured programming, and machine learning into hybrid architectures that achieve robust and adaptable behavior. The article thus serves as both educational and strategic guidance, helping readers to select, integrate, and operate robots for real-world problem solving and innovation across multiple domains.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmad, A., & Muhammad Ali, B. (2016). Software architectures for robotic systems: A systematic mapping study. Journal of Systems and Software, 122, 16–39. https://doi.org/10.1016/j.jss.2016.08.039 DOI: https://doi.org/10.1016/j.jss.2016.08.039

Andreasson, H., Grisetti, G., Stoyanov, T., & Pretto, A. (2023). Software architectures for mobile robots. In Encyclopedia of Robotics (pp. 1–11). Springer. https://doi.org/10.48550/arXiv.1703.06907 DOI: https://doi.org/10.1007/978-3-642-41610-1_160-1

Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., & Yoshida, C. (2009). Cognitive developmental robotics: A survey. IEEE Transactions on Autonomous Mental Development, 1(1), 12–34. https://doi.org/10.1109/TAMD.2009.2021702 DOI: https://doi.org/10.1109/TAMD.2009.2021702

Argall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483. https://doi.org/10.1016/j.robot.2008.10.024 DOI: https://doi.org/10.1016/j.robot.2008.10.024

Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94–111. https://doi.org/10.1016/j.biosystemseng.2016.06.014 DOI: https://doi.org/10.1016/j.biosystemseng.2016.06.014

Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., & Erhan, D. (2017). Domain separation networks. Advances in Neural Information Processing Systems, 30, 343–351. https://doi.org/10.48550/arXiv.1608.06019

Craig, J. (2005). Introduction to robotics: Mechanics and control (3rd ed.). Pearson.

Coursera. (27 de agosto de 2025). Robotics Foundations I-Robot Modelling. https://www.coursera.org/learn/robotics-foundations-robot-modelling

De Santis, A., Siciliano, B., De Luca, A., & Bicchi, A. (2008). An atlas of physical human–robot interaction. Mechanism and Machine Theory, 43(3), 253–270. https://doi.org/10.1016/j.mechmachtheory.2007.03.003 DOI: https://doi.org/10.1016/j.mechmachtheory.2007.03.003

Devin, C., Abbeel, P., Darrell, T., & Levine, S. (2018). Deep object-centric representations for generalizable robot learning. IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia. https://doi.org/10.1109/ICRA.2018.8461196 DOI: https://doi.org/10.1109/ICRA.2018.8461196

Dormido, S. (2006). Advanced PID control. IEEE Control Systems Magazine, 26(1), 98–101. https://doi.org/10.1109/MCS.2006.1580160 DOI: https://doi.org/10.1109/MCS.2006.1580160

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99–110. https://doi.org/10.1109/MRA.2006.1638022 DOI: https://doi.org/10.1109/MRA.2006.1638022

Falconi, R., Melchiorri, C., Biagiotti, L., & Macchelli, A. (2006). Roboticad: A Matlab© toolbox for robot manipulators. IFAC Proceedings Volumes, 39(15), 431–436. https://doi.org/10.3182/20060906-3-IT-1901.00073 DOI: https://doi.org/10.3182/20060906-3-IT-2910.00073

Featherstone, R. (2008). Rigid body dynamics algorithms. Springer. https://doi.org/10.1007/978-1-4899-7560-7 DOI: https://doi.org/10.1007/978-1-4899-7560-7

Ghazal, M., Al-Ghadhanfari, M. y Waisi, N. (2024). Simulation of autonomous navigation of turtlebot robot system based on robot operating system. Bulletin of Electrical Engineering and Informatics, 13(2), 1238-1244. https://doi.org/10.11591/eei.v13i2.6419 DOI: https://doi.org/10.11591/eei.v13i2.6419

Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. Proceedings - IEEE International Conference on Robotics and Automation, 2, 1321–1326. Leuven, Belgium. https://doi.org/10.1109/ROBOT.1998.677288 DOI: https://doi.org/10.1109/ROBOT.1998.677288

Hu, F., Qu, F., Li, J., & Zhao, H. (2022). Real-time research based on ARM-based robot EtherCAT master system. International Symposium on Control Engineering and Robotics. Changsha, China. https://doi.org/10.1109/ISCER55570.2022.00009 DOI: https://doi.org/10.1109/ISCER55570.2022.00009

Ijspeert, A., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid robots. IEEE International Conference on Robotics and Automation (ICRA). Washington, DC, USA. https://doi.org/10.1109/ROBOT.2002.1014739

ISO. (2025). ISO/TS 15066:2016 robots and robotic devices—Collaborative robots. https://www.iso.org/standard/62996.html

Javaid, M., Haleem, A., Singh, R., Rab, S., & Suman, R. (2022). Significant applications of Cobots in the field of manufacturing, 2, 222–233. https://doi.org/10.1016/j.cogr.2022.10.001 DOI: https://doi.org/10.1016/j.cogr.2022.10.001

Kelly, J., & Sukhatme, G. (2011). Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration. The International Journal of Robotics Research, 30(1), 56–79. https://doi.org/10.1177/0278364910382802 DOI: https://doi.org/10.1177/0278364910382802

Kober, J., Bagnell, J., & Peters, J. (2001). A historical perspective of robotics toward the future. Journal of Robotics and Mechatronics, 13(3), 299–313. https://doi.org/10.20965/jrm.2001.p0299 DOI: https://doi.org/10.20965/jrm.2001.p0299

Kober, J., Bagnell, J., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238–1274. https://doi.org/10.1177/0278364913495721 DOI: https://doi.org/10.1177/0278364913495721

Kofer, D., Bergner, C., Deuerlein, C., Schmidt-Vollus, R., & Heß, P. (2021). Human–robot-collaboration: Innovative processes, from research to series standard. Procedia CIRP, 97, 98–103. https://doi.org/10.1016/j.procir.2020.09.185 DOI: https://doi.org/10.1016/j.procir.2020.09.185

Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan. https://doi.org/10.1109/IROS.2004.1389727

Li, P., An, Z., Abrar, S., & Zhou, L. (2025). Large language models for multi-robot systems: A survey. arXiv. https://arxiv.org/pdf/2502.03814v1

Liu, Z., Liu, Q., Xu, W., Wang, L., & Zhou, Z. (2022). Robot learning towards smart robotic manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 77, 102360. https://doi.org/10.1016/j.rcim.2022.102360 DOI: https://doi.org/10.1016/j.rcim.2022.102360

Lynch, K., & Park, F. C. (2017). Modern robotics: Mechanics, planning, and control. Cambridge University Press. https://api.semanticscholar.org/CorpusID:69542521 DOI: https://doi.org/10.1017/9781316661239

Macchelli, A., & Melchiorri, C. (2002). A real-time control system for industrial robots and control applications based on real-time Linux. IFAC Proceedings Volumes, 3(1), 55–60. https://doi.org/10.3182/20020721-6-ES-1901.00821 DOI: https://doi.org/10.3182/20020721-6-ES-1901.00821

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot operating system 2: Design, architecture, and uses in the wild. Science Robotics, 7(66), eabm607. https://doi.org/10.1126/scirobotics.abm607 DOI: https://doi.org/10.1126/scirobotics.abm6074

Macenski, S., Moore, T., Lu, D., Merzlyakov, A. y Ferguson, M. (2023). From the desks of ROS maintainers: A survey of modern & capable mobile robotics algorithms in the robot operating system 2. Robotics and Autonomous Systems, 168, 104493. https://doi.org/10.1016/j.robot.2023.104493 DOI: https://doi.org/10.1016/j.robot.2023.104493

Merlet, J. P. (2006). Parallel robots. Springer.

Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., & Davison, A. (2011). KinectFusion: Real-time dense surface mapping and tracking. 10th IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland. https://doi.org/10.1109/ISMAR.2011.6092378 DOI: https://doi.org/10.1109/ISMAR.2011.6162880

Peng, X., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Sim-to-real transfer of robotic control policies. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Brisbane, QLD, Australia. https://doi.org/10.1109/IROS.2018.8460528 DOI: https://doi.org/10.1109/ICRA.2018.8460528

Pratt, G., & Manzo, J. (2013). The DARPA Robotics Challenge [Competitions]. IEEE Robotics & Automation Magazine, 20(2), 7–12. https://doi.org/10.1109/MRA.2013.2255424 DOI: https://doi.org/10.1109/MRA.2013.2255424

Pratt, G., & Williamson, M. (1995). Series elastic actuators. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1, 399–406. Pittsburgh, PA, USA. https://doi.org/10.1109/IROS.1995.525827 DOI: https://doi.org/10.1109/IROS.1995.525827

Quigley, M., Conley, K., Gerkey, B., & Faust, J. (2009). ROS: An open-source robot operating system. ICRA Workshop on Open Source Software, 3(3.2), 5. http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf

Rankin, A., Maimone, M., Biesiadecki, J., Patel, N., Levine, D., & Toupet, O. (2021). Mars curiosity rover mobility trends during the first 7 years. Journal of Field Robotics, 38(5), 759–800. https://doi.org/10.1002/rob.22011 DOI: https://doi.org/10.1002/rob.22011

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv. https://doi.org/10.48550/arXiv.1707.06347

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6), 233–242. https://doi.org/10.1016/S1364-6613(99)01327-3 DOI: https://doi.org/10.1016/S1364-6613(99)01327-3

Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2(4), 505–518. https://doi.org/10.1142/S0219843605000594 DOI: https://doi.org/10.1142/S0219843605000594

Siciliano, B., & Khatib, O. (Eds.). (2016). Springer handbook of robotics. Springer. https://doi.org/10.1007/978-3-319-32552-1 DOI: https://doi.org/10.1007/978-3-319-32552-1

Srinivas, S., Ramachandiran, S., & Rajendran, S. (2022). Autonomous robot-driven deliveries: A review of recent developments and future directions. Transportation Research Part E: Logistics and Transportation Review, 165, 102834. https://doi.org/10.1016/j.tre.2022.102834 DOI: https://doi.org/10.1016/j.tre.2022.102834

Spong, M., Hutchinson, S., & Vidyasagar, M. (2019). Robot modeling and control. Wiley.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. https://mitpress.mit.edu/9780262039246/reinforcement-learning/

Sucan, I., Moll, M., & Kavraki, L. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19(4), 72–82. https://doi.org/10.1109/MRA.2012.2205651 DOI: https://doi.org/10.1109/MRA.2012.2205651

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT Press. https://mitpress.mit.edu/9780262201629/probabilistic-robotics/

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization for transferring deep neural networks from simulation to the real world. arXiv. https://doi.org/10.48550/arXiv.1703.06907 DOI: https://doi.org/10.1109/IROS.2017.8202133

Tomo, J., Domjan, M., & Orehovacki, T. (2024). Intelligent robotics—A systematic review of emerging technologies and trends. Electronics, 13(3), 542. https://doi.org/10.3390/electronics13030542 DOI: https://doi.org/10.3390/electronics13030542

Van den Berg, J., Snoeyink, J., Lin, M., & Manocha, D. (2009). Centralized path planning for multiple robots: Optimal decoupling into sequential plans. Robotics: Science and Systems V, University of Washington. Seattle, USA. https://doi.org/10.15607/RSS.2009.V.018 DOI: https://doi.org/10.15607/RSS.2009.V.018

Vukobratovic, M., & Stepanenko, J. (1972). On the stability of anthropomorphic systems. Mathematical Biosciences, 15(1), 1–37. https://doi.org/10.1016/0025-5564(72)90061-2 DOI: https://doi.org/10.1016/0025-5564(72)90061-2

Zhang, D., Wang, J., Jing, Y., & Shen, A. (2024). The impact of robotics on STEM education: Facilitating cognitive and interdisciplinary advancements. Applied and Computational Engineering, 69(1), 7–12. https://doi.org/10.54254/2755-2721/69/20241433 DOI: https://doi.org/10.54254/2755-2721/69/20241433

Zhou, Z., Song, J., Xie, X., Shu, Z., Ma, L., Liu, D., Yin, J., & See, S. (2024). Towards building AI-CPS with NVIDIA Isaac Sim: An industrial benchmark and case study for robotics manipulation. ICSE-SEIP '24: Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice, 263–274. https://doi.org/10.1145/3639477.3639740 DOI: https://doi.org/10.1145/3639477.3639740

Descargas

Publicado

2025-10-04

Cómo citar

Merizalde Zamora, Y. ., Alulema Cuesta, M. A. C., Alcivar Reyna, T. ., & Barba Salazar, J. . (2025). Fundamentals of applied robotics: an integrated guide on control, programming and training. Prohominum, 7(4), 44–72. https://doi.org/10.47606/ACVEN/PH0383